skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Wentao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Enabled by long-read sequencing technologies, particularly Single Molecule, Real-Time sequencing, N6-methyladenine (6mA) footprinting is a transformative methodology for revealing the heterogenous and dynamic distribution of nucleosomes and other DNA-binding proteins. Here, we present ipdTrimming, a novel 6mA-calling pipeline that outperforms existing tools in both computational efficiency and accuracy. Utilizing this optimized experimental and computational framework, we are able to map nucleosome positioning and transcription factor occupancy in nuclear DNA and establish high-resolution, long-range binding events in mitochondrial DNA. Our study highlights the potential of 6mA footprinting to capture coordinated nucleoprotein binding and to unravel epigenetic heterogeneity. 
    more » « less
    Free, publicly-accessible full text available May 21, 2026
  2. Abstract N6-adenine methylation occurs in both DNA and RNA (referred to as 6mA and m6A, respectively). As an extensively characterized epi-transcriptomic mark found in virtually all eukaryotes, m6A in mRNA is deposited by METTL3-METTL14 complex. As a transcription-associated epigenetic mark abundantly present in many unicellular eukaryotes, 6mA is coordinately maintained by two AMT1 complexes, distinguished by their mutually exclusive subunits, AMT6 and AMT7. These are all members of MT-A70 family methyltransferases (MTases). Despite their functional importance, no structure for holo-complexes with cognate DNA/RNA substrate has been resolved. Here, we employ AlphaFold3 (AF3) and molecular dynamics (MD) simulations for structural modeling ofTetrahymenaAMT1 complexes, with emphasis on ternary holo-complexes with double-stranded DNA (dsDNA) substrate and cofactor. Key structural features observed in these models are validated by mutagenesis and various other biophysical and biochemical approaches. Our analysis reveals the structural basis for DNA substrate recognition, base flipping, and catalysis in the prototypical eukaryotic DNA 6mA-MTase. It also allows us to delineate the reaction pathway for processive DNA methylation involving translocation of the closed form AMT1 complex along dsDNA. As the active site is highly conserved across MT-A70 family of eukaryotic 6mA/m6A-MTases, the structural insight will facilitate rational design of small molecule inhibitors, especially for METTL3-METTL14, a promising target in cancer therapeutics. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  3. Stable inheritance of DNA N6-methyladenine (6mA) is crucial for its biological functions in eukaryotes. Here, we identify two distinct methyltransferase (MTase) complexes, both sharing the catalytic subunit AMT1, but featuring AMT6 and AMT7 as their unique components, respectively. While the two complexes are jointly responsible for 6mA maintenance methylation, they exhibit distinct enzymology, DNA/chromatin affinity, genomic distribution, and knockout phenotypes. AMT7 complex, featuring high MTase activity and processivity, is connected to transcription-associated epigenetic marks, including H2A.Z and H3K4me3, and is required for the bulk of maintenance methylation. In contrast, AMT6 complex, with reduced activity and processivity, is recruited by PCNA to initiate maintenance methylation immediately after DNA replication. These two complexes coordinate in maintenance methylation. By integrating signals from both replication and transcription, this mechanism ensures the faithful and efficient transmission of 6mA as an epigenetic mark in eukaryotes. 
    more » « less
    Free, publicly-accessible full text available January 21, 2026
  4. Although DNAN6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has recently generated great interest. Biochemical and genetic evidence supports that AMT1, an MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, the 6mA transmission mechanism remains to be elucidated. Taking advantage of single-molecule real-time circular consensus sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA inTetrahymena thermophila. In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2′-deoxyuridine (BrdU). In ΔAMT1cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, whereas de novo methylation in ΔAMT1cells is slow and sporadic. InTetrahymena, regularly spaced 6mA clusters coincide with the linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by the reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with a striking similarity to 5-methylcytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark. 
    more » « less
  5. Abstract Seventy percent of global electricity is generated by steam-cycle power plants. A hydrophobic condenser surface within these plants could boost overall cycle efficiency by 2%. In 2022, this enhancement equates to an additional electrical power generation of 1000 TWh annually, or 83% of the global solar electricity production. Furthermore, this efficiency increase reduces CO2emissions by 460 million tons /year with a decreased use of 2 trillion gallons of cooling water per year. However, the main challenge with hydrophobic surfaces is their poor durability. Here, we show that solid microscale-thick fluorinated diamond-like carbon (F-DLC) possesses mechanical and thermal properties that ensure durability in moist, abrasive, and thermally harsh conditions. The F-DLC coating achieves this without relying on atmospheric interactions, infused lubricants, self-healing strategies, or sacrificial surface designs. Through tailored substrate adhesion and multilayer deposition, we develop a pinhole-free F-DLC coating with low surface energy and comparable Young’s modulus to metals. In a three-year steam condensation experiment, the F-DLC coating maintains hydrophobicity, resulting in sustained and improved dropwise condensation on multiple metallic substrates. Our findings provide a promising solution to hydrophobic material fragility and can enhance the sustainability of renewable and non-renewable energy sources. 
    more » « less